Inverse Trig - 9/30/16

1 Inverse Trig

Definition 1.0.1 $\sin ^{-1}(x)=y \Longleftrightarrow \sin (y)=x$ where $-\pi / 2 \leq y \leq \pi / 2$.
Example 1.0.2 $\sin ^{-1}(\sqrt{2} / 2)=\pi / 4$

$$
\sin ^{-1}(1 / 2)=\pi / 6
$$

$\arcsin (1)=\pi / 2$
$\sin ^{-1}(\sin (x))=x$
$\sin (\arcsin (x))=x$
Definition 1.0.3 $\cos ^{-1}(x)=y \Longleftrightarrow \cos (y)=x$ where $0 \leq y \leq \pi$.
Example 1.0.4 $\cos ^{-1}(\sqrt{2} / 2)=\pi / 4$

$$
\cos ^{-1}(1 / 2)=\pi / 3
$$

$\arccos (1)=0$
$\cos ^{-1}(\cos (x))=x$
$\cos (\arccos (x))=x$
Definition 1.0.5 $\tan ^{-1}(x)=y \Longleftrightarrow \tan (y)=x$ where $-\pi / 2<y<\pi / 2$.

2 Examples

Example 2.0.6 $\cos \left(\tan ^{-1}(3 / 4)\right)=$? First let's draw the triangle: we pick an angle and call it θ. Then $\tan (\theta)=3 / 4$, so I label the side opposite as 3 and the side adjacent to θ as 4. Then use the Pythagorean theorem to solve for the length of the last side. Now the problem is really asking me for the \cos of this angle θ. But that's just 4/5.

Example 2.0.7 $\cos \left(\tan ^{-1}(x)\right)$. Let's draw the triangle. We pick an angle and call it θ. Then $\tan (\theta)=x$, so I label the side opposite as x and the side adjacent to θ as 1. Let's solve for the hypotenuse. By the Pythagorean Theorem, it will be $\sqrt{x^{2}+1}$. Then \cos is adjacent over hypotenuse, so this gives us $\frac{1}{\sqrt{x^{2}+1}}$.

Example 2.0.8 $\tan \left(\sin ^{-1}(x)\right)$. Let's draw the triangle. I know that x is opposite and 1 is the hypotenuse, so let's solve for the adjacent side. By the Pythagorean Theorem, it will be $\sqrt{1-x^{2}}$. Then \tan is opposite over adjacent, so this gives us $\frac{x}{\sqrt{1-x^{2}}}$.

