Inverse Trig - 9/30/16

1 Inverse Trig

Definition 1.0.1 $\sin^{-1}(x) = y \iff \sin(y) = x$ where $-\pi/2 \le y \le \pi/2$.

Example 1.0.2 $\sin^{-1}(\sqrt{2}/2) = \pi/4$ $\sin^{-1}(1/2) = \pi/6$ $\arcsin(1) = \pi/2$ $\sin^{-1}(\sin(x)) = x$ $\sin(\arcsin(x)) = x$

Definition 1.0.3 $\cos^{-1}(x) = y \iff \cos(y) = x$ where $0 \le y \le \pi$.

Example 1.0.4 $\cos^{-1}(\sqrt{2}/2) = \pi/4$ $\cos^{-1}(1/2) = \pi/3$ $\arccos(1) = 0$ $\cos^{-1}(\cos(x)) = x$ $\cos(\arccos(x)) = x$

Definition 1.0.5 $\tan^{-1}(x) = y \iff \tan(y) = x$ where $-\pi/2 < y < \pi/2$.

2 Examples

Example 2.0.6 $\cos(\tan^{-1}(3/4)) =$? First let's draw the triangle: we pick an angle and call it θ . Then $\tan(\theta) = 3/4$, so I label the side opposite as 3 and the side adjacent to θ as 4. Then use the Pythagorean theorem to solve for the length of the last side. Now the problem is really asking me for the cos of this angle θ . But that's just 4/5.

Example 2.0.7 $\cos(\tan^{-1}(x))$. Let's draw the triangle. We pick an angle and call it θ . Then $\tan(\theta) = x$, so I label the side opposite as x and the side adjacent to θ as 1. Let's solve for the hypotenuse. By the Pythagorean Theorem, it will be $\sqrt{x^2 + 1}$. Then \cos is adjacent over hypotenuse, so this gives us $\frac{1}{\sqrt{x^2+1}}$.

Example 2.0.8 $\tan(\sin^{-1}(x))$. Let's draw the triangle. I know that x is opposite and 1 is the hypotenuse, so let's solve for the adjacent side. By the Pythagorean Theorem, it will be $\sqrt{1-x^2}$. Then tan is opposite over adjacent, so this gives us $\frac{x}{\sqrt{1-x^2}}$.

